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Abstract: Several chemicals, including environmental
toxicants and clinically useful drugs, cause severe cellular
damage to different organs of our body through metabolic
activation to highly reactive substances such as free radi-
cals. Carbon tetrachloride is an organic compound of which
chemical formula is CCl₄. CCl4 is strong toxic in the kidney,
testicle, brain, heart, lung, other tissues, and particularly in
the liver. CCl4 is a powerful hepatoxic, nephrotoxic and
prooxidant agent which is widely used to induce hepato-
toxicity in experimental animals and to create hepatocel-
lular carcinoma, hepatic fibrosis/cirrhosis and liver injury,
chemical hepatitis model, renal failure model, and neph-
rotoxicity model in recent years. The damage-causing
mechanism of CCl4 in tissues can be explained as oxida-
tive damage caused by lipid peroxidation which starts after
the conversion of CCl4 to free radicals of highly toxic
trichloromethyl radicals (•CCl₃) and trichloromethyl peroxyl
radical (•CCl₃O2) via cytochrome P450 enzyme. Complete
disruption of lipids (i.e., peroxidation) is the hallmark of
oxidative damage. Free radicals are structures that contain
one or more unpaired electrons in atomic or molecular or-
bitals. These toxic free radicals induce a chain reaction and
lipid peroxidation in membrane-like structures rich in
phospholipids, such as mitochondria and endoplasmic re-
ticulum. CCl4-induced lipid peroxidation is the cause of
oxidative stress, mitochondrial stress, endoplasmic reticu-

lum stress. Free radicals trigger many biological processes,
such as apoptosis, necrosis, ferroptosis and autophagy.
Recent researches state that the way to reduce or eliminate
these CCl4-induced negative effects is the antioxidants
originated from natural sources. For normal physiological
function, there must be a balance between free radicals and
antioxidants. If this balance is in favor of free radicals,
various pathological conditions occur. Free radicals play a
role in various pathological conditions including Pulmo-
nary disease, ischemia / reperfusion rheumatological dis-
eases, autoimmune disorders, cardiovascular diseases,
cancer, kidney diseases, hypertension, eye diseases,
neurological disorders, diabetes andaging. Free radicals are
antagonized by antioxidants and quenched. Antioxidants
do not only remove free radicals, but they also have anti-
inflammatory, anti-allergic, antithrombotic, antiviral, and
anti-carcinogenic activities. Antioxidants contain high
phenol compounds and antioxidants have relatively low
side effects compared to synthetic drugs. The antioxidants
investigated in CCI4 toxicity are usually antioxidants from
plants and are promising because of their rich resources and
low side effects. Data were investigated using PubMed,
EBSCO, Embase, Web of Science, DOAJ, Scopus and Google
Scholar, Carbon tetrachloride, carbon tetrachloride-induced
toxicity, oxidative stress, and free radical keywords. This
study aims to enlighten the damage-causing mechanism
created by free radicals which are produced by CCl4 on
tissues/cells and to discuss the role of antioxidants in
the prevention of tissue/cell damage. In the future,
Antioxidants can be used as a therapeutic strategy to
strengthen effective treatment against substances with high
toxicity such as CCl4 and increase the antioxidant capacity
of cells.

Keywords: antioxidants; carbon tetrachloride; hepatotox-
icity; nephrotoxicity; neurotoxicity; oxidative stress.

Introduction

CCl4 is a colorless, clear, fireproof, and volatile liquid
substance. It has a carbon atom at its center and four Cl−

atoms around it. Besides naturally occurring, it can also
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occur as a result of many chemical reactions. It has strong
chemical stability, correspondingly resulting in an atmo-
spheric half-life of 30 to 100 years [1]. While CCI4 was
widely used in the production of cleaning agents and sol-
vents, in grain spraying and the synthesis of chlorofluo-
rocarbons as an intermediate product, its production was
reduced after its toxicity had been discovered. Although
the harmful effects of products, various oils, varnish, pol-
ish, rubber waxes, insecticides, as resin solvent and in
starting materials of organic compounds [2, 3]. CCl4 enters
the body easily through inhalation, ingestion and dermal
absorption. Respiration is the primary way of exposure in
which pulmonary absorption is estimated to be 60% in
humans. The rate of absorption from the gastrointestinal
system is rapid and greatly influenced by the diet (for
example, fat or alcohol increases absorption of CCl4 in the
intestine) [4]. The average daily intake of CCl4 for the
general population is estimated to be 0.1 mg. After expo-
sure to this toxic compound by ingestion, inhalation or
dermal absorption, it spreads in the body with the highest
concentrations through the liver, brain, kidney,muscle, fat
and blood. Human data on the carcinogenic effects of CCl4
is limited. However, it has been shown that CCl4 induces
hepatocellular carcinomas by oral, inhalation and paren-
teral exposure in rodents. US Environmental Protection
Agency classifiedCCl4 in GroupB2 as possibly carcinogenic
to humans [5, 6]. Acute toxicity of CCl4 has been obtained
from many animal studies. Especially the studies on rats
have shown that the lethal dose (LD)50 is after acute oral
intake and the body weight is within the range of 4.7–
14.7 mL/kg, based on nutritional conditions and applied
supplements [7]. The general population may be exposed
to CCl4, albeit in small amounts, from the surrounding air
because CCl4 easily vaporizes. Unfortunately, the interfu-
sion of CCl4 into the air, water, and soil as chemical waste
cannot be controlled [8]. The first step in tissue/cell dam-
age caused by CCl4 is cytochrome P450-mediated transfer
by transferring a single electron to the C–Cl bond; this
leads to the formation (•CCl3), which is a carbon-centered
radical and an intermediate metabolite, and then the
transformation of it to the trichloromethyl peroxyl radical
(•OOCCl3) in the presence of oxygen. These reactive free
radical metabolites of CCl4 initiate lipid peroxidation by
reacting with polyunsaturated fatty acids (PUFA); or cause
cell membrane disruption, leakage of microsomal en-
zymes, and thus cell damage by covalently binding to
protein and fatty acids [6, 9–10]. Lipid peroxidation prod-
ucts are highly reactive and show significant biological
effects which, depending on their concentration, cause
selective changes in cell signaling, protein and DNA
damage, and cytotoxicity. The main primary products of

lipid peroxidation are lipid hydroperoxides (LOOH) Among
the many different aldehydes that may occur as secondary
products during lipid peroxidation, there are structures
such as malondialdehyde (MDA), propanal, hexanal, and
4-hydroxynonenal (4-HNE) [11, 12]. AlthoughMDA appears
to be the most mutagenic product of lipid peroxidation,
4-HNE is the most toxic one [13] (Figure 1). Carbohydrates
are also affected by free radicals. Reducing sugars plays an
important role inmodifying proteins through the formation
of advanced glycation end products in a non-enzymatic
reaction called glycation. Glycation is a common mecha-
nism found in many disorders, and molecular precursors,
particularly reactive dicarbonyl metabolite methylglyoxal,
are key to the development and accumulation of damage. It
is known that biological products related to glycation are
mainly related to aging, neurodegenerative disorders,
diabetes and its complications, atherosclerosis, kidney
failure, immunological changes, retinopathy, skin photo,
osteoporosis, and progression of some tumors [14–16].
Proteins interact easily with free radicals due to the sen-
sitive amino acids in their structure. The amino acids of
cysteine, methionine and histidine are particularly sensi-
tive to the attack and oxidation of the hydroxyl radical.
Enzymes, where these amino acids are located in positions
critical to the activity of the enzyme, enter the path of
interactionwith free radicals and the activity of the enzyme
is disabled. Besides free radical oxidation of proteins can
lead to changes in the three-dimensional structure of the
proteins, as well as the cleavage, aggregation or cross-
linking of the proteins [17–18]. DNA is the genetic material
of the cell, and permanent damage to DNA can lead to
changes (i.e., mutations) in the proteins encoded in DNA,
which can lead to malfunction or complete inactivation of
the affected proteins. DNA must remain intact for the
viability of individual cells and even the whole organism.
ROS is an important source of DNA damage that causes
yarn breaks, removal of nucleotides and various changes of
the organic bases of the nucleotides. Cells have developed
repair mechanisms to correct naturally occurring changes
in DNA. However, excessive changes caused by ROS can
lead to permanent changes in DNA or damage to DNA.
Cellular DNA damage plays a role in the etiology and
progression of many different human disorders and dis-
eases [17, 19]. CCl4 causes disorders in the kidneys, lungs,
testicle, and brain. Some chemicals, including various
environmental toxicants and clinically useful drugs, can
cause serious cellular damage in different organs of our
body through metabolic activation with highly reactive
substances such as free radicals [20–22].

Biomolecules such as proteins, lipids, nucleic acids,
and carbohydrates are generally suitable for oxidation,
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which leads to a change in the structure of biomolecules.
ROS, which has a comprehensive effect on cell physi-
ology, is produced as a byproduct of normal cellular
metabolism in the oxidative reaction process of the
mitochondrial respiratory chain. In addition, ROS is
produced as a cellular response to xenobiotics, cytokines,
and bacterial invasion. Moderate ROS has positive effects
such as killing invasive pathogens, wound healing and
repair processes. However, Excessive ROS exposure im-
pairs redox homeostasis. ROS has a short half-life and
reacts with nearby molecules such as proteins, DNA,
RNA, glucids or free fatty acids and initiates them as free
radicals and changes their structure and/or functions.
The resulting oxidative modifications of biomolecules are
quite stable [23-24]. ROS in the cell changes the balance
between oxidant/antioxidant status, leading to cell
damage, apoptosis and cell death. In recent years, free
radicals such as NO, ONOO−, H2O2, O

•
2 and

•OH are the
most important factorsmediating oxidative stress and the
cornerstone or precursor of some detrimental diseases
[25, 26]. Free radicals are reactive chemical species that
differ from other compounds since they have unpaired

electrons in their outer orbits. Free radicals may damage
cellular components [27]. Because of the unstable
configuration in the outer orbit, it is then released by
reacting with nearby biomolecules, such as carbohy-
drates, nucleic acids, proteins, and lipids. ROS mediates
various intracellular signaling cascades. This type of
damage caused by free radicals is called “oxidative
stress”. Another definition of oxidative stress is that the
imbalance between oxidants and reductants (antioxi-
dants) at the cellular or individual level resulting in favor
of oxidants [26, 28–31]. Along with this, ROS also dam-
ages the organelles such as endoplasmic reticulum and
mitochondrion [32, 33]. Accumulated ROS leads to ER
dysfunction, thereby inducing ER stress. ROS causes
unfolded and misfolded protein production, which
further induces ER stress [34]. CCl4 is one of the most
powerful toxins widely used in scientific researches to
produce experimental models in many pathophysiolog-
ical conditions [35–38]. Cells have a complex antioxidant
defense system that regulates cellular redox homeostasis
to reduce or eliminate ROS damage. Antioxidants are
classified as enzymatic and non-enzymatic antioxidants.
Examples of non-enzymatic antioxidants are glutathione,
minerals, uric acid, bilirubin,melatonin, vitamins (A, C, E),
carotenoids (lycopene, β-carotene, zeaxanthin, lutein),
bioflavonoids (quercetin, myricetin), flavone (e.g., api-
genin, luteolin), flavonoids (e.g., taxifolin), flavan-3-ols
(e.g. catechin, epigallocatechin), flavanone (e.g., hes-
peretin, naringenin), anthocyanidin (e.g., cyanidin, del-
phinidin), isoflavone (e.g., genistein, daidzein),
Hydroxycinnamates (ferulic acid, caffeic acid, sinapic
acid, p-coumaric acid). Enzymatic antioxidants function
through a variety of enzymes including superoxide dis-
mutase (SOD), catalase (CAT), glutathione peroxidases
(GSH-Px), peroxiredoxins and glutathione S-transferase
(GST). NADPH, GSH, and thioredoxin act together with
these enzymes to defend against damage caused by ROS
[26, 39, 40]. In the ROS production process, superoxide
radicals are the primary reactive oxygen intermediate;
SODs catalyze the rapid removal of superoxide radicals
and are converted into H2O2. The intermediate H2O2 is
then converted into water with CAT or GSH-Px. CAT is
found in peroxisomes and contains iron [41, 42]. GSH-Pxs
are found in cytosol, mitochondria, plasma, and nucleus.
GSH-Pxs help prevents lipid peroxidation and maintains
redox balance as well as intracellular homeostasis. Thi-
oredoxin plays several key roles in maintaining the redox
environment of the cell. In the defense against ROS, the
thioredoxin system lowers H2O2 in cooperation with Trx
peroxidases or glutathione [43]. Antioxidants do not only
remove free radicals, they also have anti-inflammatory,

Figure 1: Reactive free radical metabolites of CCl4 react with
polyunsaturated fatty acids, initiating lipid peroxidation. This
causes oxidative/mitochondrial, endoplasmic reticulum stress.
Antioxidants, on the other hand, stop lipid peroxidation and prevent
these stress situations from occurring.
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anti-allergic, antithrombotic, antiviral, and anticarcino-
genic activities [44].

In recent years, there is an increase in analyzing the
role of antioxidants in reducing the harm of toxic sub-
stances such as free radical-producing CCl4. This study
aims to discuss the damage of free radicals produced by
CCl4 on cell/tissue and the mechanism of action of natural
antioxidant compounds.

Methodologies and literature
search

PubMed, EBSCO, Embase, Web of Science, directory of
open access journals (DOAJ), Scopus, and Google Scholar
were searched using keywords of Carbon tetrachloride,
carbon tetrachloride-induced toxicity, CCl4-induced hep-
atotoxicity, CCl4-induced renal Toxicity, CCl4-induced
nephrotoxicity, CCl4-induced neurotoxicity, CCl4-induced
reproductive system, CCl4-induced testis damage, oxida-
tive stress, free radicals, antioxidants, and antioxidant
therapy. A synthesis was obtained from the determined
findings and results. In this review, no date limitation was
made while scanning the articles. If possible, the last 5
years were preferred. But sometimes it was used in previ-
ously published articles.

Hepatotoxicity of CCl4

The liver is a vital organ that performs a wide range of
functions, including biotransformation and detoxification
of endogenous and exogenous harmful substances and
metabolic homeostasis [45–46]. It has been reported that
numerous drugs and chemicals cause liver injury, which is
generally considered to be the main cause of chronic liver
disease [47]. CCl4 belongs to the hepatotoxin class which
plays a role after themetabolic activation. It is believed that
CCl4 usually enters hepatocytes and forms free radicals to
cause peroxidation, which leads to disruption of liver
structure and damage in liver function [48, 49]. The
developmental stages of CCl4-induced liver injury are
summarized as follows; reductive dehalogenation, cova-
lent binding of radicals, inhibition of protein synthesis, fat
accumulation, loss of calcium homeostasis, apoptosis, and
fibrosis [50]. Mechanisms such as activation of Kupffer
cells, lipid peroxidation, reactive aldehydes, and nucleic
acid hypomethylation along with the production of
proinflammatory mediators are seen as supporting mech-
anisms for CCl4 induced hepatotoxicity. In addition to the

activation of Kupffer cells, it can activate macrophages, T
lymphocytes and neutrophils that participate in liver
inflammation [11, 51, 52]. CCl4 is a strong hepatoxic and
prooxidant agent widely used to induce hepatotoxicity and
to create hepatocellular carcinoma, hepatic fibrosis/
cirrhosis and liver injury, and chemical hepatitis model. In
the acute toxic doses of CCl4, fatal liver failure occurs when
the regenerative capacity of the liver is exceeded [11, 49, 53,
54]. It started to be used to create a murine non-alcoholic
steatohepatitis model with rapid progression of broad
fibrosis andHCC, using the high-fat, high fructose and high
cholesterol western diet with weekly low-dose intraperi-
toneal CCl4 [55]. CCl4 application causes significant path-
ological changes such as tremendous hepatocellular
necrosis, bile duct proliferation, balloon degeneration,
leukocyte infiltration (inflammation), vascular occlusion,
loss of hepatic nodules structure, perisinusoidal space
cords, increased collagen depositions, central vasodila-
tion, cellular hypertrophy, hepatocellular fibrosis, fatty
acid infiltration, and vascular degeneration and calcifica-
tion [56–58]. CCl4 increases oxidative stress in the liver. The
mechanism underlying liver injury due to oxidative stress
involves the imbalance of oxidation and antioxidant sys-
tems, thereby forms excessively free radicals and reducing
antioxidant capacity [54]. CCl4 causes a decrease in liver
cells, in the activities of antioxidant enzymes such as CAT,
SOD, GSH-Px, GST, GR, and Glutathione levels content to
endogenous antioxidants [57–60]. CCl4 increases the pro-
tein carbonyl content, which is a protein oxidation prod-
uct, at the oxidative stress biomarker MDA level [61].
Antioxidants reduced MDA, H2O2, TBARS and ROS, which
aremarkers of oxidative stress in liver tissue, and increased
the activities of SOD, CAT, GSH-Px, GR antioxidant en-
zymes. (Table 1) It has been reported that CCl4 activates
proinflammatory cytokine-producing Kupffer cells and
significantly upregulates the expressions of TNF-α, Mono-
cyte chemoattractant Protein-1, Macrophage inflammatory
protein-2, IL-1β, IL-6, TGF-21, which is a pro-fibrotic cyto-
kine, and nuclear factor-mB p65 protein in the CCl4
induced liver injury models. In the CCl4-induced hepatic
fibrosis model, it has been reported that the expression
levels of α-SMA and COL-1a1 mRNA, which are the fibrotic
markers in the liver tissue, were again upregulated [49, 58,
60, 61]. CCl4 application significantly increases the con-
centrations of serummarker enzymes in the liver. It causes
an increase in the amounts of enzymes in serum which are
normally found in the cytoplasm (Table 1) An increase in
Alanine Transaminase (ALT), AST: Aspartate Trans-
aminase (AST), GGT, and Bilirubin levels are indicative of
cellular leakage and loss of functional integrity of the liver
cell membrane and these tests are critical determinants of
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liver function (Table 1). Oral exposure to CCl4 alters liver
enzymes as well as increases triglyceride, total cholesterol,
LDL-cholesterol levels and reduces pseudocholinesterase
values. Along with this, the level of lipogenic transcription
factor SREBP-1 is upregulated to target lipogenic enzyme
FAS activity [7, 54, 61, 62]. It is one of the main factors
causing oxidative stress, nitrosative stress, endoplasmic
reticulum stress, mitochondrial stress, inflammation, and
hepatic damage mediated by free radicals derived from
CCl4. CytochromeP450 enzyme is involved in the process of
CCl4-induced liver injuries. Cytochrome P450 in hepato-
cytes catalyzes CCl4 to produce highly reactive •CCl3 and
•OOCCl3. It is suggested that CCl3O2 creates alkylation re-
action by inactivating the enzymes directly through mem-
brane proteins and covalent bonds with the first
mechanism or stimulates themembrane lipid peroxidation
which causes liver steatosis, fibrosis or cirrhosis, by
affecting the membrane fatty acids with the second
mechanism. The fact that CCl4 increases lipid peroxidation
disrupts especially endoplasmic reticulum and mitochon-
dria. Besides, this radical reacts with nucleic acids and
proteins and damages cellular processes. The formation of
an adduct between the DNA and CCl3 is also triggered [7,
49, 53, 63–64]. Peroxides, which are the peroxidation
products, inhibit protein synthesis and activity of some
enzymes. Following these events, free radical production
exceeds the antioxidant defenses in the liver; this results in
oxidative destruction of the cell membranes and severe
tissue damage. Free radicals are agents that cause or at
least aggravate liver injury that can cause chronic liver
diseases such as liver fibrosis and cirrhosis [65, 66]. The
liver contains a large number of mitochondria and it is the
main source for free radicals. In the CCl4-induced liver
injury, significant reduction is observed in the mitochon-
drial complex 1 and 2 activities [61]. Free radicals produced
by CCl4 disrupt the integrity and stability of the mito-
chondrial structure causing mitochondrial dysfunction.
When the mitochondrial permeability transition pore is
opened, the mitochondria swell and thus results in low
mitochondrial membrane potential (MMP), which is a
sensitive index used to assess mitochondrial function.
Mitochondrial dysfunction causes unbound oxidative
phosphorylation in energy respiration. A significant num-
ber of electron leaks occur from the non-separated electron
transport chain. The leakage of the electron into the final
electron acceptor during the electron transport enables it to
bind to oxygen (O2) and is considered as the main ROS
source. High ROS level initiates lipid peroxidation, con-
sumes free radical scavengers, breaks down the body’s
antioxidant system and leads to blasting oxidative stress in
the body [67, 68]. Increased ROS based on CCl4 may cause

tissue damage through lipid peroxidation and increase
Tissue Inhibitor of Metalloproteinase-1 expression,
decrease EGF expression, and cause liverfibrosis due to the
accumulation of collagen in the liver [60]. The prominent
pathological feature of liver fibrosis is an excessive accu-
mulation of extracellular matrix (ECM) [69]. CCl4 increases
α-SMA-positive myofibroblast-like cells, which are
considered to be a suitable marker of hepatic fibrosis in the
liver, and again, increases the hyaluronic acid (HA), lam-
inin (LN), collagen type 3 (Col III), collagen type IV (Col IV)
levels significantly. Also, it increases the level of MMP-9,
one of the MMPs which can play an important role in pre-
dicting and repairing the condition of liver injury and
inflammation [58, 61]. It has been observed that CCl4
application indicated a quite significant increase in the
AKT, MAPK STAT3, and TGF-b expression and that the Nrf2
expression, which is an important transcription factor that
regulates the expression of a group of detoxifying and
antioxidant defense genes in the liver, decreased signifi-
cantly [47, 70, 71] (Table 1). CCl4 causes upregulation of the
proapoptotic protein Bax and downregulation of the anti-
apoptotic protein Bcl2. Similarly, CCl4 increases Fas/FasL
expression and increases the activity of caspase-3 and-8
and cytochrome P450 2E1, which leads to liver apoptosis. It
binds to the Fas ligand and forms the signal complex
causing death by Fas-associated protein with death
domain (FADD) and then activates caspase-8, which leads
to activation of caspase-9 and 3 [60, 70, 71] (Table 1). CCl4
induces endoplasmic reticulum stress. It induces glucose-
regulated protein of 78 kDa (GRP78), total X-Box Binding
Protein 1 (XBP1t), added X-Box Binding Protein 1 (XBP1s),
jointless X-Box Binding Protein 1 (XBP1s) [72]. As a result,
CCl4 damages the membrane of liver cells and prevents the
proper functioning of organelles such as endoplasmic re-
ticulum and mitochondria since it is a hepatotoxin. Anti-
oxidants reduce the risk of CCl4-induced hepatocellular
carcinoma, hepatic fibrosis/cirrhosis, liver injury, and
chemical hepatitis. Antioxidants gain importance by
reducing oxidative stress, mitochondrial stress, endo-
plasmic reticulum stress and preventing macromolecular
oxidation in liver tissue. Antioxidants neutralize the
harmful effects of free radicals induced by CCl4 on liver
cells andmodulate biochemical changes in liver tissue and
pull parameters to physiological limits (Table 1).

Nephrotoxicity of CCl4

The kidney is an important organ that is necessary for the
maintenance of homeostasis by the body, the regulation of
the extracellular environment such as detoxification and
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the elimination of toxic metabolites and drugs. Therefore,
the kidney can be accepted as the main target organ for
exogenous toxic substances [76, 77]. CCl4 is on the list of
nephrotoxic drugs and chemicals such as Acetylamino-
fluorene, Diethylnitrosamine, streptozotocin, amikacin,

amoxicillin, amphotericin B, amoxicillin, benzylpenicillin,
cefotaxime, ceftazidime, cirozino, amitromin sulfadiazine,
vancomycin, captopril, furosemide, hydralazine, hydro-
chlorothiazide, losartan, acetazolamide mannitol, acet-
aminophen, warfarin, and risperidone [6, 66, 67]. Recently,

Table : Protective effects of antioxidants against CCl-induced hepatotoxicity.

Animal
model

Organ Treatment Outcomes Effect References

Mice (CCl,
mL/kg/
b.w, i.p)

Liver Taxifolin AST↓, ALT↓, SOD↑, GSH-Px↑, GST↑, MDA↓ Taxifolin alleviates acute liver injury
caused by CCl in mice.

[]

Mice and
rats (CCl)

Liver Thymosin β (TB) AST↓,ALT↓,SOD↑, GSH-Px↑, GST↑, MDA↓,
TNF-α ↓, IL-β ↓, Hydroxyprolinecontents↓

TB shows a hepatoprotective effect
against liver injury in mice and rats
induced by CCl.

[]

Rats (CCl,
. mL/
 g/b.w)

Liver E. ulmoides Extract
(ILF-RE)

SOD↑, CAT↑,GSH-Px↑, GST↑, AST↓, γ-GT ↓ ,
ALT↓, TG↓, Total Cholesterol↓, CHOP↓, p-
PERK ↓, p-eIF↓, SREBP-↓, FAS↓,

ILF-RE may be a potential therapeutic
agent for preventing/treating CCl-
induced chronic hepatic
dysfunction.

[]

Rats (CCl,
. mL/kg
b.w)

Liver Rumex hastatus AST↓, ALP↓γ-GT ↓ , ALT↓, TG, Total Choles-
terol, SOD↑, CAT↑, GSH-Px↑, GST↑,
HO↓, TBARS↓ ,GST↑, GSR↑, GR↑, POD↑

Rumex hastatus strengthens the de-
fensemechanism of antioxidants in
treatment and can play a thera-
peutic role in diseases mediated by
free radicals

[]

Rats (CCl,
 mL/kg
b.w)

Liver Averrhoa carambola
L. (Oxalidaceae)
roots (EACR)

AST↓, ALP↓ , ALT↓, Hyp ↓,SOD↑,GSH-Px↑,
GST↑, MDA↓, TBARS↓ ,GST↑, GSR↑, GR↑,
Col-I↓HA↓, LN↓, Col III↓, Col IV↓, α-SMA↓ ,
TIMP-, TGF-β, Smad↓, Smad↓,
Smad↓, Bax/Bcl- ↓, caspase-/cas-
pase-

EACR decreases liver fibrosis in CCl
treated rats. EACR is anti-fibrotic,
antioxidant, and anti-apoptotic.

[]

Rats (CCl,
 mL/kg)

Liver Rutin AST↓, ALT↓, IL-↓, MEK↓, FADD↓, Bcl↑, Bcl-
xl↓, EGF↑, JAK↓

CCl application causes alteration in
the expression of IL-/STAT
pathway genes, leading to hepato-
toxicity. Rutin reverses these
expression changes and protects
against CCl-induced
hepatotoxicity.

[]

Rats
( mg/
kg, i.p)

Liver Naringenin ALP↓, γ-GTP ↓ , ALT↓, GLYCOGEN↑, GST↑,
MMP-↑, MMP-↑ , CTGF↑, Col-I↑, MMP-
↑, NF-κB↓, IL-β↓, IL-↓, TGF-β↓

Naringenin prevents oxidative stress
and inflammation pathways, thus
fulfilling its antifibrotic effects.

[]

Mice (CCl,
. g/
kg, i.p)

Liver Salidroside SOD↑, CAT↑, GST↑, MDA↓, GOT↓, GPT↓,
ROS↓, Gadda↓, Makp↓, Rras↓

Salidroside protects the liver from
CCl-induced injuries and oxidative
stress by maintaining mitochon-
drial function.

[]

Rats (CCl,
 ml/kg
b.w)

Liver Silymarin, Vitamin E
and Curcumin

ALT↓, MAPK↑, Nrf↑, AKT↓, STAT↓, Smad-
↓, TGF-β↓

Vitamin E, silymarin, curcumin com-
bination can be used as a hep-
atoprotective agent against
hepatotoxic substances.

[]

Mice (CCl,
 mL kg−,
b.w)

Liver Pithecellobium dulce ALP↓ , ALT↓, ROS↓,SOD↑, CAT↑, GSH-Px↑,
GST↑, LHP↓TBARS↓, PC↓, GSR↑,
GR↑,GSSG↓, Total thiols↑, CYP P↑,
CYPE↑

AEPDprotects themurine liver against
oxidative degradation caused by
CCl, possibly due to its antioxi-
dant properties.

[]

Rats (CCL,
 mL/kg,
b.w)

Liver N-acetyl cysteine
(NAC)

AST↓, ALP↓, ALT↓, MDA↓ It has been seen that NAC has a pro-
tective effect against the toxicity of
Cl.

[]

284 Unsal et al.: Toxicity of carbon tetrachloride



CCl4 started to be used to induce experimental renal failure
model, experimental nephrotoxicity model, and oxidative
stress in the kidneys. After the application of CCl4 in rats, it
has been seen that CCl4 is distributed in higher concen-
tration in the kidney compared to the liver and CCl4 has a
high affinity to kidney tissue [6, 78, 79]. CCl4 adversely
affects kidney function. CCl4 exposure slows kidney func-
tion and increases Blood Urea Nitrogen (BUN), Creatine
Kinase (CK-NAC), Lactate Dehydrogenase (LDH), Total
bilirubin, Total protein, creatinine concentration, creati-
nine clearance, protein, albumin, WBCs, Platelet, Mean%
lymphocytes, Mean% granulocytes, Mean% monocytes
levels in the blood and lowers RBC. An increase in these
parameters causes nephrotoxicity. High creatinine and
urea levels are indicatives of serious damage to the struc-
tural integrity of the nephrons. It does not increase until at
least half of the kidney nephrons are damaged or destroyed
[80–84]. Urine analysis provides important information
about if the kidneys functioning properly or not. In the
urines of CCl4-applied rats, urine specific gravity, RBC,
WBC count, protein, urea, creatinine, Albumin, urobili-
nogen, and LDL increased. Increased specific gravity in-
dicates dehydration, renal artery steatosis, severe fibrosis,
renal necrosis, renal toxicity, and glomerular damage.
(Table 2). Besides, CCl4 reduces urine pH level [81, 85, 86].
Proximal tubular cells of the kidney are quite sensitive to
CCl4 toxicity due to high cytochrome P450 content. The
trichloromethyl and trichloromethyl peroxyl free radicals
that are formed after this substance is metabolized by cy-
tochrome P450 cause cell damage. It has been indicated
that when CCl4 is exposed, free radicals formed by oxida-
tive stress cause kidney injury [21, 87, 88]. Proximal tubular
toxicity develops due to direct nephrotoxic effects such as
mitochondrial dysfunction, lysosomal hydrolase inhibi-
tion, phospholipid damage, and increased intracellular
calcium concentration. Oxidative stress has a significant
effect on uremia, kidney failure, and other kidney diseases.
Renal oxidative stress is often the result of the upregulation
of proxy-to-enzyme-dependent ROS production and the
exhaustion of antioxidants together. Depletion or inacti-
vation of antioxidants leads to accumulation of endoge-
nous ROS within cells. It activates ROS, MAPK, P53, and
possibly P21, leading to renal tubular cell death. Then, ROS
contributes directly or indirectly to the fibrotic process
through increased inflammation. Fibrosis and inflamma-
tion itself may return to the pathway and further increase
ROS formation or stimulate the production of cytokines
and growth factors [42]. Radicals produced by CCl4 damage
cell membrane, lipids, proteins, and DNA in kidney tissue
cells [6, 84]. Altering the antioxidant status with CCI4 or
increasing free radicals causes nephropathies. In many

studies, it has been reported that CCl4 application signifi-
cantly decreases SOD, GSH-Px, GST, GR, CAT activities,
and GSH levels in renal tissues. After CCl4 administration,
an increase in lipid peroxidation products (MDA, LPO,
TBARS), an increase in DNA damage and an increase in
protein oxidation productwere found in kidneys. Oxidative
stress caused by excessive ROS production often leads to
kidney inflammation and fibrosis through various
signaling pathways. (Table 2) CCl4 also increases the pro-
duction of classic inflammatory cytokines such as IL-1, IL-
2, and TNF-α, but also increases the activity of caspase 9
and caspase 3, among the important enzymes of apoptosis,
defined as programmed cell death [5, 82, 83, 89–94]. Cas-
pases are involved in apoptosis subclassified by effect
mechanisms based on initiator caspases such as caspase 9
or caspase 3. CCl4 increases the activity of caspase 9 and
caspase 3, which can induce apoptosis by stimulating
proapoptotic Bax and inhibiting anti-apoptotic Bcl-2 pro-
teins [82]. Cytokines such as IL-1β, IL-2, IL-6, and TNF-α are
released by leukocytes and renal tubular cells and are
associated with inflammation pathogenesis in acute kid-
ney injury. Inflammatory processes aremainly activated by
NF-B, which practically modulates cytokine production
and thus increases the production of inflammatory cyto-
kines [21, 82, 93]. CCl4 makes histopathological changes in
kidney tissue. In the kidneys of CCl4-applied rats, histo-
pathological findings such as glomerular basement mem-
brane thickening, interstitial inflammation, cellular
infiltration, tubular cell swelling, vasocongestion,
pyknotic nucleus, medullary vascular congestion and
glomerular necrosis, atrophy, brush border loss, separa-
tion of epithelial cells in proximal, and distal tubules have
been indicated [22, 84, 90, 94, 95]. In recent years, various
studies have been conducted in the prevention and treat-
ment of CCl4-induced renal toxicity. As a result of these
studies, it has been seen that antioxidants have an
important role in reducing or removing renal toxicity.
Preventive effects of antioxidants against renal oxidative
stress induced by CCl4 have been attributed to high phenol
levels. Antioxidants used in the studies indicate that they
can protect against CCl4-induced nephrotoxicity by
increasing the activity of antioxidant enzymes or the levels
of non-enzymatic antioxidants (Table 2).

Neurotoxicity of CCl4

The brain is an important organ that assists the body’s
normal activities and contains various physiological
functions [96]. The fact that CCl4 is lipophilic enables it to
access to cells easily. Therefore, it is accumulated in many
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organs, including the brain [97–99]. On the other hand, the
facts that CCl4 is lipophilic lead it to cross the blood-brain
barrier, quickly taken up by the brain, accumulate in the
brain and thus lead to neurotoxicity [100, 101]. Various
CCl4 poisoning studies have been indicated that CCl4 cau-
ses free radical formation in many tissues including the
brain [102]. The brain is rich in polyunsaturated fatty acids
and is more susceptible to lipid peroxidation due to an
unusually high oxygen consumption rate. Polyunsaturated
fatty acids and aerobic metabolic activity of the brain in-
creases the sensitivity of this organ to peroxidative damage
induced by free radicals after CCl4 ingestion [103, 104].
Compared to other organs of the body, the brain’s antiox-
idant defense system activity is relatively lower and more
susceptible to oxidative stress [105]. The disadvantage of
the brain compared to the other organs is that it is not
capable of regenerating the damage caused by neuro-
inflammatory progressions resulting from increased ROS

production and that many neurotransmitters are autoxi-
dation to create ROS [101, 106]. Another opinion which
argues that the brain tissue is vulnerable to oxidative stress
or free radicals is about the fact that brain is rich in iron and
therefore playing a catalytic role in the production of
oxygen-free radicals [107]. This mechanism works as fol-
lows. CCl4 releases its neurotoxic effects through free
radical (•CCl3) which leads to membrane lipid peroxida-
tion. Free radicals produced from CCl4 and the main
molecule damage the endoplasmic reticulum, which leads
to the accumulation of lipids, decreased protein synthesis
andmixed-function oxidase activity [59, 101]. Peroxidation
of the membrane phospholipids causes the loss of mem-
brane integrity, an increase in inflammatory markers and
finally stimulated cell death [108, 109]. In addition to
inhibiting the activities of antioxidant enzymes such as
SOD, GSH-Px, CAT based on CCl4 toxicity, the indicators of
processing towards the oxidative stress in

Table : Protective effects of antioxidants against CCl-induced nephrotoxicity.

Animal
model

Organ Treatment Outcomes Effect References

Rats (CCl,
 mL/kg
b.w)

Kidney Ferulic acid SOD↑, CAT↑, GSH-Px↑, TBARS↓, HO↓, PC↓,
GST↑

Ferulic acid effectively quenches free
radicals, inhibits lipid peroxida-
tion and improves antioxidant
status in tissues.

[]

Mice (CCl,
 mL/
kg, i.p)

Kidney Allium jesdianum
Boiss

BUN↓, Creatinine↓, CAT↑, GST↑, MDA↓, GST↑ Application of the hydroalcoholic
extract of Allium jesdianum Boiss
mayprevent nephrotoxicity caused
by CCl.

[]

Mice (CCl,
 mg/
kg)

Kidney Glycyrrhiza glabra L
(GG)

WBC↓, RBC↑, Urea↓, Creatinine↓, SOD↑, CAT↑ GG has a nephroprotective effect and
has indicated that it can be used to
improve structural changes in the
kidney due to CCl-induced
toxicity.

[]

Mice (CCl,
. mL/
kg)

Kidney Zingerone BUN↓, Creatinine↓, SOD↑, CAT↑,GSH-Px↑,
TBARS↓, GST↑, GSR↑, IL-β↓, IL-↓, TNFα↓

Zingerone significantly alleviated
CCl-induced renal toxicity.

[]

Rats (CCl,
 mL/kg
b.w/i.p)

Kidney Rutin Urea↓, Creatinine↓, Uric acid↓, ↓SOD↑,
CAT↑,GSH-Px↑, MDA↓

Rutin partly overcame CCI-induced
nephrotoxicity by showing antiox-
idant effect.

[]

CCl
( mL/
kg b.w)

Kidney Sonchus asper (SA) Urea↓,Creatinine↓,Creatinine clearance↑,
Protein↓, Albumin↓, Urobilinogen↓, SOD↑,
CAT↑, GSH-Px↑, TBARS↓ HO↓, GST↑,
GSR↑

SA protects kidneys by relieving
CCl-induced oxidative stress in
rats.

[]

CCl
( mL/
kg b.w)

Kidney Raphanus sativus
Seeds (RSME)

Urea↓, Albumin↓, Creatinine↓, Protein↓,
SOD↑, CAT↑, GSH-Px↑, GST↑, HO↓,
TBARS↓, GST↑, GSR↑

RSME shows that it can relieve the
damageoccurreddue to CCl in the
renal tissue of rats.

[]

Rats (CCl,
 mL/
kg)

Kidney Curcumin + Vitamin E Urea↓, Albumin↓, Creatinine↓, T. Protein↓,
SOD↑, CAT↑, GSH-Px↑, GST↑, TBARS↓,
HO↓, PC↓, GST↑

Vitamin E and curcumin combination
can be considered as an important
combination in fighting against
potentially oxidative stress and
CCl-induced nephrotoxicity.

[]
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neurodegenerative diseases decrease in GSH level and in-
crease in lipid peroxidation product MDA and NO levels
[110, 111] (Table 3). The findings on the effect of CCl4 on
acetylcholinesterase (AChE) enzyme are different. Some
studies have reported that CCl4 decreases AChE activity [6,
112, 113] and some studies have reported that CCl4 increases
AChE activity [107]. In fact, there are contradictions. AChE
plays a role in the hydrolysis inside the choline of the
acetylcholine, which is a basic neurotransmitter of the
central nervous system. Acetylcholine (ACh) is the main
neurotransmitter of the cholinergic system associated with
cognitive functions such as spatial and episodic memory,
working memory, learning, and modulation of cerebral
blood flow. In some neurological disorders, such as Alz-
heimer’s disease, acetylcholinesterase is excessively acti-
vated in the synapses, thereby acetylcholine levels in the
brain significantly reduce, leading to impaired neuro-
transmission and thus memory loss and other adverse ef-
fects [114–116]. The AChE enzyme is a target of carbamates
used as pesticides and organophosphates (insecticides and
nerve agents) in the treatment of Alzheimer’s disease
(approved drugs such as donepezil, rivastigmine, and
galantamine), and these are inhibitors of AChE enzyme
[117]. While organophosphates and carbamates bind irre-
versibly to the AChE enzyme, reversible binding of the
drugs used in the treatment of Alzheimer’s disease to the
AChE enzyme makes them advantageous. After all, drugs
used in the treatment of Alzheimer’s disease are not suc-
cessful enough. Although there are different views, the
AChE enzyme is targeted and altered by CCl4 in both con-
ditions [117]. CCl4 increases inflammation. Pro-
inflammatory mediators have been found to increase
levels of TNF-α, IL-1β, IL-6, and TGF-1β [118, 119]. CCl4
application is a neurotoxic agent that reduces antioxidant
capacity in brain tissue and leads to increased inflamma-
tion (Table 3). To summarize, CCl4 exposure of brain tissue
causes oxidative stress due to disruption of balance in pro-
oxidant/antioxidant homeostasis in neurons. Oxidative
stress causes free radical formation, which is potentially
toxic for neurons. Excessive free radical formation dam-
ages neuron loss and lipids, proteins and DNA, which
trigger axonal damage, so free radicals cause neurotox-
icity. Oxidative stress plays a role in the progression of
Alzheimer’s disease, Huntington disease, Spinocerebellar
ataxia, amyotrophic lateral sclerosis, Parkinson’s disease,
Alzheimer’s disease and other neurodegenerative diseases.
Also, Free radicals contribute to protein misfolding, glia
cell activation, mitochondrial dysfunction, and then

cellular apoptosis. Antioxidants neutralize the harmful
effects of CCl4-induced free radicals on neurons. Some
antioxidants pull the parameters to physiological limits by
modulating biochemical changes in neurons [15, 120, 121]
(Table 3).

CCl4-induced testicular toxicity

Testicles produce sperm by balancing the self-renewal
and differentiation of spermatogonial stem cells during
male reproductive life [125]. Male sexual dysfunction is
caused by various problems related to alcoholism, some
drugs, aging, drug addiction, and smoking, sperm con-
centration caused by toxic chemicals, motility, and hor-
monal imbalance [126, 127]. Heavy metals such as lead,
cadmium, and uranium have a similar effect on testicles
that disrupt spermatogenesis through mechanisms
involving the induction of lipid peroxidation, depletion of
ROS cleansers, and disruption of testicular antioxidant
enzyme activity [128].Studies have shown that both
oxidative stress and changes in the antioxidant enzyme
system are the two most important factors leading to
reproductive dysfunction [129] (Table 4). One of the target
organs in CCl4 toxicity is the testicle, the reproductive
organ [130]. In neonatal rats exposed to CCl4 by oral and
inhalation, decreased chance of survival in newborns,
decreased fertility in rats, decreased sperm production in
male rats, and degenerative changes in testicles have
been observed [131]. In experimental studies, it has been
reported that low or high dose CCl₄ exposure causes
oxidative tissue damage and lipid peroxidation in testi-
cles, oxidative DNA damage, DNA insertions, chromo-
somal abnormalities, and genetic mutations. Besides, it
has been also indicated that histopathological changes in
testicular tissue occurred due to CCl4 toxicity. Oxidative
stress is considered to be one of the main causes of DNA
damage in germ cells. Normally, the male has a balance
between the reproductive system, ROS formation, and
antioxidant activity. However, increased ROS in sperm
disrupts sperm or seminal plasma antioxidant defense
mechanisms and may cause oxidative stress. CCl₄
decreased GSH-Px and CAT levels while increasing the
MDA level. Antioxidants reduced MDA, H2O2, TBARS, and
ROS, which are markers of oxidative stress in testicular
tissue, and increased the activities of SOD, CAT, GSH-px,
GR antioxidant enzymes [75, 132–134] (Table 4). The
development of spermatozoa, from spermatogonial stem
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cells, is regulated by various hormones and this process is
controlled by the hypothalamic-pituitary-testicular axis.
ROS accumulation in the testicles induces hypogonadism
[133]. Peroxidation of sperm lipids destroys the structure
of the lipid matrix in the membranes of the spermatozoa
and it is associated with rapid intracellular ATP loss
leading to axonemal damage, decreased sperm motility
and increased mid-piece morphological defects [135].
Spermatozoa require a high PUFA content to provide the
necessary fluidity to the plasma membrane during fertil-
ization. However, this makes spermatozoa particularly
vulnerable to ROS attacks, which are associated with
decreased fertility [135–139]. CCl4 has indicated seminif-
erous tubule necrosis, edema, and fiber accumulation,
also slope and damage in walls. These effects are thought
to result from the production of oxygen radicals that
exceed the antioxidant capacity of stressed tissue. As a
result of CCl4-induced toxicity, a significant increase was
observed in the percentage of abnormalities in sperm
head morphology [140]. Seminal ROS reduces sperm
motility and disrupts sperm morphology. Kalla and Ban-
sal observed severe spermatogenic cycle destruction,
including loss of germinal epithelium, empty germ cells,
and constriction in tubular structures after the 20th day of

initiation of CCl4 in rats [141]. CCl4 caused germ cell loss in
seminiferous tubules of rat testicles, inhibition of mitosis,
partial disappearance of the interstitium, and structural
deterioration of sertoli cells [142]. CCl4 application causes
significant decreases in body weight and weights of tes-
ticles, epididymides and accessory sex glands, as well as
reducing Follicle Stimulating Hormone (FSH), Luteinizing
Hormone (LH) and testosterone levels (Table 4). It also
increases estrogen and prolactin levels. In the male
reproductive system, prolactin and estrogens antagonize
the effects of testosterone, causing infertility in males
[143]. High levels of estrogen may directly affect sper-
matogenesis through the disruption of gonadal atrophy
secretion. Hyperstimulation of hypothalamic estrogen
receptors may affect the gonadotrophin-releasing hor-
mone (GnRH) pulse, which directly regulates GnRH gene
expression at the GnRH neuron level. It can be induced by
stimulating P450, which catalyzes the production of es-
trogen from androgen. Besides, it has been explained that
testosterone secretion may be impaired by excessive
oxidative stress and degeneration of Leydig cells [75, 132,
144, 145]. In CCl4 application, significant histopatholog-
ical findings such as necrosis, degeneration, desquama-
tion, organism, reduction in germinal cells,

Table : Protective effects of antioxidants against CCl-induced neurotoxicity.

Animal model Organ Treatment Outcomes Effect References

Rats (CCl, mL/
kg b.w)

Brain Pleurotus ostreatus SOD↑, CAT↑, GSH-Px↑ Extract of P. ostreatus relieves the
oxidative damage caused by CCl in
the brain of Wistar rats.

[]

Rats (CCl) Brain Aqueous extract of
Bryophyllum pinna-
tum (AEFP)

SOD↑, CAT↑, AChE↑, ADA↑,
GSH-Px↑, NO↓, MDA↓,
TSH↑, NSPH↑

AEBP’s ability to destroy free radicals
demonstrates its preventive role
against short-term memory effect
caused by CCl.

[]

Rats (CCl, %
solution,
. mL/kg
p.o.)

Brain Alcesefoliside SOD↑, CAT↑, GSH-Px↑,
AChE↑, MDA↓, GST↑

Alcesefoliside has a neuroprotective ef-
fect against CCl-induced brain
toxicity in rats.

[]

Rats (CCl, mL/
kg /b.w)

Brain Flaxseed oil SOD↑, CAT↑,GSH-Px↑, GST↑,
NO↓, MDA↓, TNF-α↓, IL-
↓, TGF-β↓, IL-β↓

Flaxseed oil has indicated antioxidant
and anti-inflammatory effects against
CCl toxicity.

[]

Rats (CCl, mL/
kg/b.w)

Brain Grape seed oil (GSO) SOD↑, CAT↑, GSH-Px↑,
GST↑, NO↓, MDA↓, TNF-
α↓, IL-↓, TGF-β↓

GSO has a neuroprotective effect
against CCl-induced brain injury.

[]

Rats (CCl,
 mL/kg, i.p)

Cerebrum,
Cerebellum

Vanillin SOD↑, CAT↑, AChE ↓,GST↑,
NO↓, MDA↓

Vanillin blocks the oxidative brain injury
caused by CCl in rats.

[]

Rats (CCl, mL/
kg)

Brain Watermelon juice or
ursodeoxycolic acid
(UDCA)

MDA↓ Watermelon juice protects brain tissue
from CCl toxicity.

[]

Rats (CCl, mL/
kg b.w)

Brain Cape gooseberry
(Physalis juice)

SOD↑, CAT↑,GSH-Px↑, GST↑,
GR↑

Physalis juice can be effective in pre-
venting neurotoxicity and shows
antioxidant and anti-apoptosis
properties.

[]
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spermatogenesis arrest, and significant decreases in ST,
GCLT and Johnsen’s testicle score diameters were deter-
mined. It causes histopathological damage in the testicles
and an increase in the apoptotic index of the testicles
[146]. It has been indicated that CCl4 increased the number
of caspase 3 positive cells in rat testicles. This shows that
themechanismof cell death involves caspase 3 activation.
Massive necrosis in the testicles and, consequently,
oxidative stress activate caspase 3 and increase apoptosis
[127]. Some antioxidants have been used to prevent
testicular oxidative stress, hormonal disorders,
apoptosis, and sperm abnormalities. These antioxidants
have been shown to prevent oxidative stress, hormonal
disorders, apoptosis, and sperm abnormalities. The
removal of ROS from the testicles has been attributed to
the presence of phenolic and polyphenolic compounds
that may have different functional properties, such as
prevention of the formation of free radicals and chain-
breaking activity [145] (Table 4).

Conclusion

CCl4 is strong toxic in the kidney, testicle, brain, heart,
lung, other tissues, and particularly in the liver. It disrupts
the functions of these tissues. CCl4 is a strong hepatoxic,
nephrotoxic, and prooxidant agent widely used to induce
hepatotoxicity and to create models of hepatocellular
carcinoma, hepatic fibrosis/cirrhosis and liver injury, and
chemical hepatitis, renal failuremodel, and nephrotoxicity
model in experimental animals (Figure 2). CCl4 is an
important source of free radicals. Excess free radicals in the

cell can lead to many harmful effects, including lipid per-
oxidation, DNA modification and protein oxidation,
resulting in cell damage, increased inflammation,
apoptosis and cell death. The way to reduce or eliminate
these CCl4-induced negative effects is the antioxidants that
act as shields. It is promising because of antioxidants
extracted from plants, rich sources, low diversity side ef-
fects from all antioxidants investigated in CCl4 toxicity. In
the future, Antioxidants can be used as a therapeutic
strategy to strengthen effective treatment against sub-
stances with high toxicity such as CCl4 and increase the
antioxidant capacity of cells.

Highlights

What is current knowledge?
– CCl4 is free radical source and a strong toxic substance.
– CCl4 is the cause of oxidative stress, mitochondrial

stress, endoplasmic reticulum stress.

What is new here?
– Promising targets have been reviewed in reducing and

treating the toxicity of CCl4.
– Antioxidant compounds react with free radicals from

CCl4 and are involved in reducing cell damage. Thus,
antioxidant intake can help maintain normal physio-
logical function.
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132. Türk G, Çeribaşi S, Sönmez M, Çiftçi M, Yüce A, Güvenç M, et al.
Ameliorating effect of pomegranate juice consumption on
carbon tetrachloride-induced sperm damages, lipid
peroxidation, and testicular apoptosis. Toxicol Ind Health 2016;
32:126–37.

133. Khan MR, Ahmed D. Protective effects of Digera muricata (L.)
Mart. on testis against oxidative stress of carbon tetrachloride in
rat. Food Chem Toxicol 2009;47:1393–9.

134. Abarikwu SO, Pant AB, Farombi EO. The protective effects of
quercetin on the cytotoxicity of atrazine on rat Sertoli‐germ cell
co‐ culture. Int J Androl Aug 2012;35:590–600.

135. Alahmar AT. Role of oxidative stress in male infertility: an
updated review. J Hum Reprod Sci 2019;12:4.

136. Wathes DC, Abayasekara DRE, Aitken RJ. Polyunsaturated fatty
acids in male and female reproduction. Biol Reprod 2007;77:
190–201.

137. AitkenRJ, Gibb Z, BakerMA, Drevet J, Gharagozloo P. Causes and
consequences of oxidative stress in spermatozoa. Reprod Fertil
Dev 2016;28:1–10. 27062870.

138. Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR.
Etiologies of sperm oxidative stress. Int J Reprod Biomed (Yazd)
2016;14:231–40. 27351024.
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