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Mathematical models can be useful tools in exploring population disease trends over time and can be used to gain insight into
the fundamental mechanisms of cancer development. In this paper, we provide a systematic comparison between the exact and
the approximate solutions for estimating the length of time between the biological initiation of cancer and diagnosis through the
development of a Weibull-like survival model. A total of 1,608,484 malignant primary cancers were used in the analysis using
cancer incidence data obtained from the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program.
We find that the approximate solution provides a reliable comparison of the latency periods for different types of cancer and has no
significant effect on the estimation accuracy, which differs from the exact solution by 0% to 11.3%. Thirty-five of the 44 cancers in
this analysis were found to progress silently for 10 years or longer prior to detection representing 89% of the patients in this analysis.
The results of this analysis differentiate cancer types that progress undetected over a period of years to identify new opportunities
for early detection which increases the likelihood of successful treatment and alleviates the ever-growing cancer burden.

1. Introduction

Cancer is the second leading cause of death in the United
States and across the world [1]. It is estimated that 13 million
Americans are currently living with cancer and 40.8 percent
of men and women can expect to be diagnosed with cancer at
some point in their lifetime [2]. In addition to the devastating
effects on patients and their families, the economic costs of
cancer are enormous, both in terms of direct medical-care
resources for its treatment and in the loss of human capital
due to earlymortality [3]. According to theNational Institutes
of Health, cancer costs the United States an estimated $263.8
billion in medical costs and lost productivity in 2010 and the
cost of cancer care is expected to escalate more rapidly in
the near future as more expensive targeted treatments are
adopted as standards of care [4].

To estimate the period between the biological initiation
of cancer and the medical diagnosis, we utilized the pop-
ular two-parameter Weibull distribution as our framework
in order to develop the approximate and exact parameter
solutions.TheWeibull distribution has been used to describe

the mechanisms of cancer development in previous research.
In contrast to thememoryless exponential distributionwhich
assumes a constant failure rate, the shape of the Weibull
distribution is dependent on past events and preserves a
memory of prior survival. This provides a simple but pow-
erful way to characterize how the unobserved experience of
cancer relates to the observed ones as a function to estimate
the time between onset and diagnosis [5].

Using publicly available survival data for breast, lung,
pancreatic, and stomach cancers, the approximate solutions
are compared with the exact numerical solutions and a
comparison of the results are illustrated. A review of the
literature available on cancer latency times is provided to
validate the conclusions made by the researchers. By provid-
ing cancer researchers and policy makers with information
about the types of cancers with long latency periods, we
identify opportunities for early detectionwhen cancer ismost
treatable preventing not only mortality but also reducing
morbidity and costs. Early detection represents one of the
most promising approaches to reducing the growing cancer
burden [3].
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2. Methods

2.1. Estimating Model Parameters. The Weibull model is
widely applied in survival analysis and has been shown to
fit data involving the time to appearance of tumors or death
in animals subject to carcinogenic insults over time [6]. One
of the first contributions to the understanding of cancer
incubation periods came about in the 1930s and 1940s when
Blumet al. reported that the incubation periods of skin cancer
following ultraviolet radiation exposure in mice were log
normally distributed [7, 8]. Blum et al. also determined that
the “distribution does not vary systematically with dosage of
radiation, interval between exposures, intensity of radiation
or age” which was one of the first statements about the
potential robustness of the incubation period in relation
to the dose of exposure [9]. Pike [10] and Peto and Lee
[11] also gave a theoretical motivation for the application
of the Weibull model to fit data involving the time until
the appearance of a tumor or death in animals subject to
carcinogenic insults over time [6, 10].TheWeibull model will
serve as the underlying framework for this analysis.

Assuming cancer patient survival times follow a Weibull
distribution with shape parameter, 𝛽, strictly less than 1 and
frequently equal to 1/2, we find that the hazard function
decreases over time and the distribution has a strongmemory
of prior survival times. This mathematical property is crucial
because it allows us to restore what we cautiously believe to
be the length of time between cancer initiation and diagnosis
using information known only after diagnosis. The main
advantages of the Weibull model extension are its simplicity
and ability to promote further research of medical issues
through mathematical modeling on a population scale. One
well-defined practical application of the study of cancer
latency periods is the etiological investigation of cancerwhich
is important in themanagement of past and future risk assess-
ment for the community and patients [9]. This information
can also be advantageous as a means for determining the
estimated time of exposure in a patient’s life [12].

Using the survival function from the 2-parameterWeibull
model 𝑆(𝑡) = 𝑒−(𝜆𝑡)

𝛽

as a basis, we apply the conditional
probability property that 𝑃(𝐴 | 𝐵) = 𝑃(𝐴 ∩ 𝐵)/𝑃(𝐵) and find
that theWeibull randomvariable (𝑈+𝑇) can be characterized
by the conditional survival function:

𝑆 (𝑢 + 𝑡 | 𝑢) =
𝑒−[𝜆(𝑢+𝑡)]

𝛽

𝑒−(𝜆𝑢)
𝛽

= 𝑒−𝜆
𝛽
[(𝑢+𝑡)

𝛽
−𝑢

𝛽
]; 0 < 𝑡. (1)

This function represents the probability of surviving beyond
time (𝑢+𝑡), given patient survival up to the time of diagnosis.
As stated above, the length of the unknown period from
malignancy to diagnosis is represented by the lag parameter
𝑢; 𝛽 is the shape parameter; 𝜆 is the scale parameter. Each 𝑡

𝑖

represents the time an individual was observed on the study
after diagnosis where study followup ends at death or is right-
censored to the study end point.

2.2. Exact Parameter Estimation. Maximum likelihood esti-
mation (MLE) is the most popular method of estimation and
is considered to be one of the most versatile and reliable

methods [13]. It is one of the most important techniques
in statistics and econometrics used for estimation [14].
Researchers can develop new models and estimate these
nonstandard statistical model parameters by implementing
statistical computing software that utilizes maximum likeli-
hood estimation.

The maximum likelihood estimators of 𝜆, 𝛽, and 𝑢 are
the values thatmaximize the likelihood equation,𝐿(𝑡, 𝜆, 𝛽, 𝑢),
or equivalently, the logarithm of 𝐿, log(𝐿(𝑡, 𝜆, 𝛽, 𝑢)). The
logarithm of the probability density of the sample (i.e., the
log-likelihood) simplifies to

log (𝐿 (𝑡, 𝜆, 𝛽, 𝑢))

= 𝑛𝛽 ln (𝜆) + 𝑛 ln (𝛽) + (𝛽 − 1)

×
𝑛

∑
𝑖=1

ln (𝑢 + 𝑡
𝑖

) − 𝜆𝛽
𝑛

∑
𝑖=1

(𝑢 + 𝑡
𝑖

)
𝛽

+ 𝑛𝜆𝛽𝑢𝛽.

(2)

To obtain the gradients of the log-likelihood function, we
take the partial derivative of the log-likelihood function,
log(𝐿(𝑡, 𝜆, 𝛽, 𝑢)), with respect to the three parameters 𝜆, 𝛽,
and 𝑢. To maximize the log-likelihood function, we find the
parameter values where the partial derivative is equal to zero.
The estimating equations with respect to 𝜆, 𝛽, and 𝑢 are

𝜕 log (𝐿 (𝑡, 𝜆, 𝛽, 𝑢))
𝜕𝜆

= 𝑛 − 𝜆𝛽
𝑛

∑
𝑖=1

(𝑢 + 𝑡
𝑖

)
𝛽

+ 𝑛𝜆𝛽𝑢
𝛽

,

𝜕 log (𝐿 (𝑡, 𝜆, 𝛽, 𝑢))
𝜕𝛽

= 𝑛 ⋅ ln (𝜆) + 𝑛

𝛽
+
𝑛

∑
𝑖=1

ln (𝑢 + 𝑡
𝑖

)

− 𝜆𝛽
𝑛

∑
𝑖=1

(𝑢 + 𝑡
𝑖

)
𝛽

⋅ {ln (𝜆) + ln[
𝑛

∑
𝑖=1

(𝑢 + 𝑡
𝑖

)]}

+ 𝑛𝜆𝛽𝑢𝛽 [ln (𝜆) + ln (𝑢)] ,

𝜕 log (𝐿 (𝑡, 𝜆, 𝛽, 𝑢))
𝜕𝑢

=
(𝛽 − 1)

∑
𝑛

𝑖=1

(𝑢 + 𝑡
𝑖

)
− 𝛽𝜆𝛽

𝑛

∑
𝑖=1

(𝑢 + 𝑡
𝑖

)
𝛽−1

+ 𝑛𝛽𝜆𝛽𝑢𝛽−1.

(3)

Taking (3), we define the three-dimensional gradient
vector of the log-likelihood function as

Grad log (𝐿 (𝑡, 𝜆, 𝛽, 𝑢))

= (
𝜕 log (𝐿 (𝑡, 𝜆, 𝛽, 𝑢))

𝜕𝜆
,
𝜕 log (𝐿 (𝑡, 𝜆, 𝛽, 𝑢))

𝜕𝛽
,

𝜕 log (𝐿 (𝑡, 𝜆, 𝛽, 𝑢))
𝜕𝑢

) .

(4)
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The gradient of the log-likelihood, presented in (3), provides
the formulas to numerically calculate the values of the maxi-
mum likelihood parameter estimates using the observed sur-
vival times, 𝑡

𝑖

, which are available through public data. Statis-
tically, we must find the values �̂�, 𝛽, and �̂� that maximize the
likelihood function based on the given experiment; however,
(3) cannot be solved simultaneously because they are a system
of nonlinear equations and a closed-form solution does not
exist. In such cases, the iterative Newton-Raphson method
allows us to calculate the maximum likelihood estimates.

Newton-Raphson is an extremely powerful technique
that can be used to find the solution of a system of nonlinear
equations. It is one of the most widely used methods for root
finding and can be used to maximize multiparameter log-
likelihood functions, 𝑙(𝜃), for 𝜃 lying in a parameter space
Ω [15]. For such situations, the Newton-Raphson iterative
method can be used to find the root of some function
and also exhibits rapid quadratic convergence [16]. Another
convenient feature of the Newton-Raphson method is the
error function that can be estimated using a quadratic
approximation.

Many likelihood functions have a uniquemaximumvalue
at the point 𝜃, which satisfies the equation 𝜕𝑙/𝜕𝜃 = 0.
To maximize the likelihood function, the Newton-Raphson
method begins with an initial estimation of the location of
the root, 𝜃

0

, which should be reasonably close to the true
root. The method then finds the tangent to the function and
extrapolates it to the horizontal intercept of the tangent line
to receive 𝜃

1

. The point of intersection, 𝜃
1

, is taken as the new
approximation to the root.This iterative process is continued
until the succession of points 𝜃

1

, 𝜃
2

, 𝜃
3

, . . . converge to 𝜃,
when possible. Iteration leads to rapid convergence given that
the initial root estimate is located close to the exact root.
Mathematically, the 𝑘th iteration of the Newton-Raphson
algorithm for evaluating the root of some function can be
obtained using the formula

𝜃
𝑗+1

= 𝜃
𝑗

− 𝐻(𝜃
𝑗

)−1𝑈(𝜃
𝑗

) for 𝑗 = 1, 2, . . . . (5)

In the formula, the current estimate of the root is 𝜃
𝑗

and 𝜃
𝑗+1

is the extrapolated value of the new root. The vector 𝑈(𝜃) is
the first-derivative vector such that𝑈(𝜃) = 𝜕𝑙/𝜕𝑢 and𝐻(𝜃) is
the second derivative, or Hessian matrix, 𝐻(𝜃) = 𝜕2𝑙/𝜕𝜃𝜕𝜃

for 𝑙(𝜃). By evaluating the function and its derivative at the
estimated root, the Newton-Raphson method extrapolates to
an improved estimate.

To determine the rate of change, or fractional accuracy,
between iterations we can utilize the simple formula

𝑒 =
(𝑥
𝑗

− 𝑥
𝑗+1

)

𝑥
𝑗+1

. (6)

If the fractional accuracy is less than some predetermined
value, the algorithm is considered to have converged. A
more definitive way to determine convergence is to test the
function’s value slightly above and below the estimated root to
evaluate a change in sign,which could be indicative of a global
maximum. A poor initial estimate can give rise to situations

where the Newton-Raphson algorithm does not converge or
converges slowly [17].

There are free, publicly available software packages such
as the R package maxLik that allow researchers to implement
maximum likelihood estimation for nonstandard models or
the development of new estimators [14]. To optimize the
log-likelihood function, researchers must provide the log-
likelihood function and a numerical matrix of the starting
points for the initial parameter estimates at a minimum.
Researchers also have the option to provide the gradient
vector and Hessian matrix for faster convergence. If the ana-
lytical gradient is not provided by the user, the gradient and
Hessian are calculated using the functions numericGradient
and numericHessian, which are also included in the maxLik
package [14]. The maximization of these functions for simple
models works well; however, this may not be the case for
complexmodels so the authors of themaxLik package recom-
mend providing these functions to obtain reliable estimates
[14]. To determine the initial starting points for 𝜆

0

, 𝛽
0

, and
𝑢
0

, we used the approximate parameter estimation method
detailed in Section 2.3. The function numericGradient was
used to calculate the numeric value of the gradient and
evaluate the convergence of the log-likelihood function at
successive iterations of the Newton-Raphson algorithm.

We found the estimates provided by theNewton-Raphson
algorithm to be unstable due to parameter boundary issues.
Since the initial values of the parameters𝛽 and𝜆 are close to 0,
the Newton-Raphson algorithm was searching for values less
than zero which was causing the algorithm to not converge as
expected. Although users have the ability to force a parameter
value to be equal to some constant when using maxLik,
there was no option known to the authors to force the lower
boundary of the parameter to be greater than or equal to zero.
As a work-around, the authors used the Newton-Raphson
algorithm in conjunctionwith themethod of steepest descent
(also known as the gradient descent method) to optimize
the log-likelihood function. This method searches along the
steepest descent direction until the function converges to a
stationary point. To validate that the steepest descent method
is working correctly, we also verified that the value of the log-
likelihood function decreases at each iteration.

2.3. Approximate Parameter Estimation. Utilizing the meth-
ods presented by Nadler and Zurbenko, the approximate
parameter value of the latency period can be estimated using
simple linear regression methods [5, 18]. Given that the con-
ditional Weibull model is a parametric model, we are able to
use likelihood based inference to determine an approximate
estimate for the length of time between cancer initiation
and diagnosis. Linear regression methods are preferred to
estimate the Weibull model parameters because of their
computational simplicity and ease of graphical interpretation
[19–21]. A linear regressionmodel can be used to estimate the
slope, 𝛽, because theWeibull model has the key property that
the log of the negative log of the estimated survivor function
against log time is linear where the regression equation has
slope, 𝛽, and intercept, 𝛽 ln(𝜆) [22, 23].
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To determine the solution of the MLE of 𝑢, denoted as
�̂�, we find the value of 𝑢 that maximizes the log-likelihood
function proposed in (2), by letting the partial derivative of
the log-likelihood with respect to 𝑢 equal 0:

𝜕 log (𝐿 (𝑡, 𝜆, 𝛽, 𝑢))
𝜕𝑢

= 0 =
𝑛

∑
𝑖=1

(𝛽 − 1)

(𝑢 + 𝑡
𝑖

)
− 𝛽𝜆𝛽 [(𝑢 + 𝑡

𝑖

)
𝛽−1

− 𝑢𝛽−1]

=
𝑛

∑
𝑖=1

(𝛽 − 1)

(𝑢 + 𝑡
𝑖

)
− 𝛽𝜆𝛽 [

(𝑢 + 𝑡
𝑖

)
𝛽

(𝑢 + 𝑡
𝑖

)
−
𝑢𝛽

𝑢
] .

(7)

To find the approximate MLE solution, we assume that 𝑢
is large and 𝑡 is small such that when we evaluate the integral
below, we find the following term to be small:

∫
Δ

𝑡=0

𝛽 − 1

𝑢 + 𝑡
𝑖

𝑑𝑡 = (𝛽 − 1) ln (𝑢 + 𝑡)

Δ

𝑡=0

= (𝛽 − 1) [ln (𝑢 + Δ) − ln (𝑢 + 0)]

= (𝛽 − 1) [𝑓 (𝑡)] ≈ (𝛽 − 1) 𝑢−1.

(8)

We further simplify the approximating equation by substi-
tuting the linear regression parameters 𝑎 and 𝑏 obtained by
regressing the log transform of the Kaplan-Meier product-
limit survival estimates on the observed study times for a
given sample. The log-survival model takes the form

log 𝑆 (𝑢 + 𝑡 | 𝑢) = −𝜆𝛽 [(𝑢 + 𝑡
𝑖

)
𝛽

− 𝑢𝛽] = 𝑎 + 𝑏 (𝑢 + 𝑡
𝑖

) .

(9)

Applying these properties to the log-likelihood function, we
find the approximate solution of the latency estimate, �̂�, by
maximizing the equation

𝜕 log (𝐿 (𝑡, 𝜆, 𝛽, 𝑢))
𝜕𝑢

= 0 =
𝑛

∑
𝑖=1

𝑢 ⋅ {
(𝛽 − 1)

(𝑢 + 𝑡
𝑖

)
− 𝛽𝜆𝛽 [

(𝑢 + 𝑡
𝑖

)
𝛽

(𝑢 + 𝑡
𝑖

)
−
𝑢𝛽

𝑢
]}

=
𝑛

∑
𝑖=1

(𝛽 − 1) − 𝛽𝜆𝛽 [(𝑢 + 𝑡
𝑖

)
𝛽

− 𝑢𝛽]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑎+𝑏(𝑢+𝑡𝑖)

⇒
− (𝛽 − 1)

𝛽
= 𝑎 + 𝑏 (𝑢 + 𝑡

𝑖

) .

(10)

Letting the partial derivative of the log likelihoodwith respect
to 𝑢 equal 0, we find the approximate estimate of the length
of the latency period at the time of cancer diagnosis, where 𝑡

𝑖

is equal to 0 as

�̂� =
(− (𝛽 − 1) /𝛽) − 𝑎

𝑏
. (11)

This function represents the time where the log-transformed
survival estimate, 𝑆(𝑡), regressed on 𝑡, equals the correction
factor [−(𝛽 − 1)/𝛽]. By plotting the log negative log Kaplan-
Meier estimates against the natural log of time, we can
determine the slope of the regression equation, 𝛽:

ln [− ln 𝑆 (𝑢 + 𝑡 | 𝑢)] = −𝛽 ln (𝜆)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
intercept

+ 𝛽⏟⏟⏟⏟⏟⏟⏟
slope

ln (𝑢 + 𝑡
𝑖

) . (12)

To determinemodel parameters 𝑎 and 𝑏, the log-transformed
conditional Kaplan-Meier estimates were regressed on time
with intercept, 𝑎, and slope, 𝑏:

ln 𝑆 (𝑢 + 𝑡 | 𝑢) = 𝑎 + 𝑏 (𝑢 + 𝑡
𝑖

) . (13)

3. Analysis

3.1. Data. A retrospective cohort study design was used
to study the survival patterns of cancer patients. Cancer
incidence and survival data from 1975 through 2008 were
obtained from the Surveillance, Epidemiology, and End
Results (SEER) program of the National Cancer Institute.The
SEER registries currently collect an estimated 97% of incident
cancers within the SEER regions which are representative of
the United States population [24]. SEER is a national registry
for cancers that is commissioned by the National Cancer
Institute which began maintaining records of patients with
cancer in 1973 [25]. From this dataset, cancer site, date of
diagnosis, summary stage, tumor sequence number, cause of
death, and vital status were used in the analysis.

Patients aged 18 and older were included in the analysis
if they were diagnosed with their first primary malignant
between 1975 and 2008. Patients with multiple malignant
tumors over their lifetime were excluded from the cohort,
as patients who were known to have died of causes other
than cancer were excluded from this analysis as determined
by the cause of death variable available in the SEER dataset.
Invasive malignant neoplasms, as considered by SEER where
the stage is either localized, regional, or distant, were included
in this analysis and in situ cases were excluded. The types
of cancer chosen for this analysis were restricted to those
with high mortality rates and limited availability of effective
treatment options allowing the disease to follow its natural
course minimizing potential biases. By selecting cancers with
highmortality rates, wemaximize the amount of information
known to the researcher allowing more precise estimates.
Overall, 44 cancer types were selected and analyzed with a
total sample size of 1,608,484 patients.

3.2. Results. We iteratively solve for the maximum likelihood
estimates, �̂�, 𝛽, and �̂� using the Newton-Raphson algorithm.
We may use any reasonable estimate of the parameters as
our initial starting point, 𝜆

0

, 𝛽
0

, and 𝑢
0

. We chose to use the
estimates obtained from the approximate solution which can
be solved using the linear regressionmodels presented in (12)
and (13). By regressing the log Kaplan-Meier estimates on the
observed study times for a given sample, we find the intercept
and slope of the linear regression line to find the estimates for
𝑎 and 𝑏. We also regress the log negative log Kaplan-Meier
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survival estimates on the natural log of time to determine
the slope and shape parameters of theWeibull model, 𝛽

0

and
𝜆
0

, respectively. To determine the initial starting point for the
latency parameter, 𝑢

0

, we use the formula presented in (11).
Using the starting values of the parameters, 𝜆

0

, 𝛽
0

, and
𝑢
0

, the Newton-Raphson algorithm was used to determine
the next starting point, 𝜆NR(1), 𝛽NR(1), and 𝑢NR(1). We find the
Newton-Raphson algorithm to be unstable when the starting
values of the parameters 𝜆

0

and 𝛽
0

are close to zero. In order
to receive a better approximation of the parameters, we used
a combination of the Newton-Raphson algorithm and the
gradient method. The gradient is a vector that is directed
towards the maximum value of the likelihood equation. To
determine the maximum likelihood estimates, we use the
values 𝜆NR(1), 𝛽NR(1), and 𝑢NR(1) as the starting point for the
gradient method. At each successive iteration, the direction
of the gradient is calculated and followed to the peak of the
likelihood function expecting that at each iteration, the values
of the gradient vector decrease. By definition, the maximum
likelihood values occur at the point atwhich the vector is zero.

The accuracy of the estimates provided can be improved
only by increasing the study sample size to decrease the
variability of the estimate, 𝜎/√𝑛; therefore, the preciseness of
our estimates are constrained by the sample size for publicly
available data. We may find that after several iterations of
the gradient method we must stop iterating because the
parameter estimates are themost precise we are able to obtain
out of the sample that is available to us. The approximate
and exact solutions for breast, lung, pancreatic, and stomach
cancers are provided in Table 1.

We find that the exact solutions are very close to the
approximate solutions which differ by approximately 0%
to 11.3%. The key feature of the approximate solution is
that it provides a reliable solution that is obtainable using
simple linear regression which is the most widely used of
all statistical techniques. It is important to mention that it is
always possible to obtain the exact solution when considered
necessary; however, determining the exact solution is very
complex, time consuming, and not easily automatable.

In Table 2, we determine the total sample size, 5-year
survival rate, approximate time from cancer initiation to
diagnosis, and the median age at cancer initiation by cancer
site. The approximate estimates include all invasive cancer
stages combined to determine the average length of time
from initiation to diagnosis for the entire population. These
estimates depend on the totality of cancer treatment and are
dependent on the health system infrastructure, availability of
resources, and overall health of the population; therefore, the
methods presented can be used with other data sources but
the results may differ due to these factors. The information
presented in Table 2 can be used to determine types of cancer
where early detection is most impactful; those with a high
case volume, poor survival rate, and the growth of the cancer
go undetected for an extended period of time.

Thirty-five of the 44 cancers presented progress for 10
years or more prior to detection representing 89% of the
1,608,484 total malignancies in this analysis.These results are

Table 1: Comparison of approximate and exact latency estimates for
selecting cancers by site.

Cancer site Exact latency
period (years)

Approximate
latency period

(years)
% difference

Breast 17.2 16.3 5.2%
Lung 13.6 13.6 0.0%
Pancreas 9.5 8.43 11.3%
Stomach 22.9 22.3 2.6%

extremely encouraging as they identify a multitude of oppor-
tunities for new research on early detection and preventative
screening. It is also useful to reference the median age at
initiation to determine when the cancer initiated to advise
effective screening guidelines and practices which is valuable
information for public health professionals.

This information is intended to raise questions rather
than to answer them. It is important to understand at the
outset that the availability of scientific literature assessing
the minimum latency period for specific types of cancer is
scarce [26]. To evaluate the validity of our model estimates,
we review literature involving the biological and statistical
estimation of the length of cancer latency periods.

A recent journal article identified an alarming national
surge in the number of cases of oropharyngeal cancers in
people under the age of 45 and the human papillomavirus, or
HPV, may be what is causing the increase [27]. Historically,
oropharyngeal cancers have been predominant in elderly
people with a prolonged history of heavy smoking or drink-
ing with a typical latency period of 25 years [28, 29]. Gayar
et al. state that the predominance of oropharyngeal cancers
in patients under 45 “suggests either nonsexual modes of
HPV transfer at a younger age or a shortened latency period
between infection and development of cancer” [27]. The
results in Table 2 support this finding and indicate a 12.3
year latency period for oropharyngeal cancer and 16.9 years
for other oral cavity and pharynx cancers suggesting that
a shortened latency period may be partly blamed for this
sudden epidemic.

Ovarian cancer, which is the fifth leading cause of cancer
death in women aged 35 to 74 years, is usually found at an
advanced stage causing the survival rate to be lower than
other types of cancer that are easier to detect at an early stage
[30]. Ovarian cancer has a reasonably long latency period
between initiation and manifestation of established disease
which is exacerbated by the late detection of the disease
which has been estimated to be approximately 30–40 years
for advanced ovarian cancer [31]. Another source cites that
the risk of ovarian cancer due to acute radiation exposure at
age 10 is approximately three times greater than exposure at
age 50 and the latency period for solid tumors can range from
5 to 40 years, with a period of expression longer than 50 years
for some cancers [32] which coincides with the approximated
latency estimate of 44.1 years for ovarian cancer found in
Table 2.
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Table 2: Approximate latency times from cancer initiation to diagnosis by cancer site.

Cancer site Sample size 5-year survival rate Years from onset to diagnosis Median age at cancer onset
Acute lymphocytic leukemia 3,701 21.5% 35.7 8.3
Acute monocytic leukemia 1,118 8.8% 15.7 47.3
Acute myeloid leukemia 17,733 12.3% 25.7 39.3
Aleukemic, subleukemic, and NOS 1,785 15.5% 19.3 52.7
Ascending colon 30,038 46.2% 56.8 16.2
Brain 36,828 9.9% 21.9 36.1
Breast 378,477 54.3% 16.3 43.7
Cecum 46,552 36.7% 52.4 20.6
Chronic lymphocytic leukemia 24,466 15.9% 2.2 67.8
Chronic myeloid leukemia 10,498 9.6% 5.1 58.9
Descending colon 13,634 42.4% 52.4 16.6
Esophagus 26,504 6.0% 9.4 56.6
Floor of mouth 5,260 31.5% 21.9 40.1
Gallbladder 8,105 9.6% 25.2 46.8
Gum and other mouth 9,834 37.5% 28.7 34.3
Hypopharynx 5,241 4.8% 9.6 53.4
Kidney and renal pelvis 56,093 33.2% 48.2 14.8
Large intestine, NOS 9,225 19.0% 37.9 36.1
Larynx 22,545 43.1% 35.4 27.6
Liver 22,316 6.0% 10.8 53.2
Lung and bronchus 358,750 6.4% 13.6 53.4
Myeloma 33,252 3.8% 3.6 65.4
NHL-nodal 70,558 27.5% 26.5 37.5
Nasopharynx 4,435 32.4% 25.2 29.8
Nose, nasal cavity, and middle ear 4,062 30.6% 23.0 40.0
Oropharynx 1,763 18.6% 12.3 48.7
Other biliary 8,811 7.4% 16.1 54.9
Other digestive organs 2,145 7.3% 6.6 63.4
Other myeloid/monocytic leukemia 1,424 13.1% 10.5 61.5
Other oral cavity and pharynx 1,722 14.9% 16.9 46.1
Ovary 47,721 25.8% 44.1 17.9
Pancreas 65,835 1.8% 8.4 60.6
Peritoneum, omentum, and mesentery 2,622 11.5% 9.2 56.8
Pleura 5,153 2.5% 4.5 65.5
Rectosigmoid junction 28,603 35.8% 36.6 31.4
Rectum 60,514 34.3% 29.8 37.2
Retroperitoneum 2,433 12.0% 23.1 37.9
Sigmoid colon 69,135 44.3% 52.1 16.9
Small intestine 7,957 25.9% 26.0 38.0
Splenic flexure 7,259 31.7% 42.4 27.6
Stomach 54,521 11.9% 22.3 46.7
Tongue 14,102 33.8% 26.7 33.3
Tonsil 7,429 27.5% 18.9 39.1
Transverse colon 18,325 37.8% 57.0 15.0

A biological study published in Nature collected genetic
materials from 7 patients who died of end-stage pancre-
atic cancer and determined the timing of carcinogenesis.
Researchers found that it took 11.7 years, on average, for
a mature pancreatic tumor to form after the appearance of
the first cancer-related mutation in a pancreatic cell. Another

6.8 years passed, on average, before the primary tumor sent
out a metastatic lesion to another organ. From that point,
the patient died in 2.7 years, on average. In total, more
than 20 years elapsed between the appearance of the first
mutated pancreatic cell and death [33–36]. The estimate
obtained using the Weibull model extension indicates that
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8.4 years passed on average from the time of cancer initiation
to diagnosis for patients with all-stage pancreatic cancers
combined.

Colorectal cancer is another commonly diagnosed cancer
in both men and women and is the third leading cause of
cancer death. The American Cancer Society states that the
majority of colorectal cancers and deaths could be prevented
by applying existing knowledge about cancer prevention
and increasing the use of established screening tests [37].
There has been sufficient evidence established to conclude
that smoking causes colorectal cancer which appears to be
stronger for rectal cancer than for colon cancer with a
particularly long latency period [37, 38]. The Health Pro-
fessionals and Nurses’ Health study showed an association
of at least three to four decades between tobacco exposure
and colorectal cancer diagnosis [39, 40]. It is believed that
previous research had difficulty identifying this association
due to the long latency period and also because of the
association due to the extensive time lag between smoking
and the occurrence of an adenocarcinoma [41]. The latency
estimates provided in Table 2 range from 29.8 years for
rectal cancer to 57 years for traverse colon cancer which
complement existing research in the field.

4. Conclusions

The approximate solution provides a reliable assessment of
the length of time from what is cautiously believed to be the
biological initiation of cancer until diagnosis where cancer’s
growth is often silent and undetected. The approximate
solution provides a very good comparison between the
different types of cancer and the small difference between the
exact estimates do not affect key scientific inferences. When
required, the exact solution is always obtainable through the
methods described in this paper. This prediction method
is recommended for cancer types with a large number of
patients and a highmortality, so the true shape of the survival
distribution is known and reduces the potential for bias. For
example, melanoma cancer was excluded from our estimates
because we believe it to be an unreliable estimate because
advanced detection methods have drastically changed the
shape of the true survival experience due to longer life
expectancies and fewer deaths attributed to skin cancers.

The results also have implications for researchers and
policy makers when appropriating resources. The approxi-
mate solution can also provide a scientific basis for screening
guidelines and diagnostic tests. It is important to remember
that cancers may be silent and not associated with any
symptoms until late-stage cancer develops which is why
screening and early detection are so important. Patients often
report nonspecific symptoms, delaying the diagnosis of the
root cause of cancer which greatly decreases the chance of
survival. The results indicate that malignant cells are present
in the body for decades but may be undetectable using
currently available technologies which identify a number
of opportunities for new research on early detection and
preventative screening. The cost of cancer care in the United
States is substantial and is expected to increase due to

population changes alone, and early detection provides one of
the most promising approaches to reduce the growing cancer
burden [3, 4].
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